Em que casos podemos falar da soma dos Infinitos termos de uma PG?
Em que casos podemos falar da soma dos Infinitos termos de uma PG?
A soma dos termos de uma PG infinita pode ser calculada por meio de uma fórmula matemática na qual dividimos o valor do primeiro termo por um menos a razão da PG (1 – q). ... É possível somar os termos de uma PG infinita dividindo o valor do primeiro termo dessa sequência por 1 – q (um menos a razão).
O que é uma razão de uma PG?
A razão de uma PG pode ser encontrada a partir da divisão de um termo da sequência pelo seu antecessor. Ao fazer isso, caso ela seja realmente uma progressão geométrica, essa divisão sempre será igual a q. Logo, essa PG possui razão q = 2.
Qual a diferença entre um termo e uma PG?
Uma progressão geométrica (PG) é uma sequência numérica onde cada termo é igual ao produto de seu antecessor com uma constante, chamada razão da PG. Em outras palavras, a diferença entre dois termos quaisquer e consecutivos de uma PG é uma constante. Exemplo de progressão geométrica: (1, 3, 9, 27, 81, …)
Como calcular o décimo termo de uma PG?
Por exemplo, para determinar o décimo termo da PG (1, 2, 4, 8, 16, …), podemos fazer: Pois a 1 = 1, q = 2 e n = 10. Prosseguindo nos cálculos: Existem duas possibilidades para o cálculo da soma dos termos de uma PG.
Qual a função de uma PG?
Uma PG é uma sequência numérica onde cada termo é o resultado do produto entre seu antecessor e uma constante, conhecida como razão. Essa característica apenas não é observada no primeiro termo, pois ele não possui antecessor. Veja a seguir um exemplo de PG de razão 2 e primeiro termo 3:
Qual é o termo central da PG?
O termo central da PG é também a sua média geométrica. Uma PG pode ser classificada como finita, quando existir uma qualidade limitada de termos, ou infinita. Além disso, também classificamos a PG de acordo com seu comportamento, podendo ser crescente, decrescente, constante e oscilante.