Como construir um gráfico de uma função quadrática?

Índice

Como construir um gráfico de uma função quadrática?

Como construir um gráfico de uma função quadrática?

Cinco passos para construir o gráfico de uma função do 2º grau

  1. → Primeiro passo: Calcular o valor de ∆
  2. → Terceiro passo: Encontrar as raízes (quando possível)
  3. → Quarto passo: Calcular pontos (quase) aleatórios.
  4. → Quinto passo: Desenhar o gráfico.

Como fazer uma função de segundo grau?

A função de segundo grau, também chamada de função quadrática ou função polinomial do 2° grau, é escrita como: f(x) = ax² + bx + c. Sendo os coeficientes "a, b e c" números reais e "a" diferente de 0 (zero). O grau da função é determinado de acordo com o maior expoente que a incógnita x assume.

Quais são os coeficientes da função quadrática?

Sendo assim, os coeficientes da função quadrática dada são: a = 1 b = - 3 c = 4. Raízes da Função. As raízes ou zeros da função do segundo grau representam aos valores de x tais que f(x) = 0. As raízes da função são determinadas pela resolução da equação de segundo grau: f(x) = ax 2 +bx + c = 0

Quais são as raízes de uma função quadrática?

Encontre os zeros da função f (x) = x 2 – 5x + 6. Substituindo esses valores na fórmula de Bhaskara, temos: Portanto, as raízes são 2 e 3. Observe que a quantidade de raízes de uma função quadrática vai depender do valor obtido pela expressão: Δ = b2 – 4. ac, o qual é chamado de discriminante.

Quais são as funções do 1o grau?

Diferente das funções do 1º grau, onde conhecendo dois pontos é possível traçar o gráfico, nas funções quadráticas são necessários conhecer vários pontos. A curva de uma função quadrática corta o eixo x nas raízes ou zeros da função, em no máximo dois pontos dependendo do valor do discriminante ( Δ).

Postagens relacionadas: