Como determinar o domínio de uma função logarítmica?

Índice

Como determinar o domínio de uma função logarítmica?

Como determinar o domínio de uma função logarítmica?

Domínio da função logarítmica Como dito acima, a função logarítmica é definida pela formação f(x) = logax, sendo < a ≠ 1. Isso remete a uma função f: R*+ ---> R, ou seja, o domínio integra o conjunto dos números reais positivos, excluindo o zero. (R*+).

Como resolver função log?

Definimos a função logarítmica como f: R* + → R, ou seja, seu domínio é o conjunto dos números reais não nulos e seu contradomínio são os números reais, tal que a lei de formação pode ser descrita por f(x) = logax,, em que x é a variável e a é a base do logaritmo.

Que características apresentam o gráfico de uma função logarítmica?

Características do gráfico da função logarítmica y = logax O gráfico está totalmente à direita do eixo y, pois ela é definida para x > 0. Intersecta o eixo das abscissas no ponto (1,0), então a raiz da função é x = 1. Note que y assume todos as soluções reais, por isso dizemos que a Im(imagem) = R.

Qual é o conjunto imagem da função logarítmica?

Índice | Função logarítmica Sua imagem é o domínio da função exponencial, ou seja, todos os números reais. Novamente, para garantir que o logaritmo esteja bem definido, a sua base, assim como a base da função exponencial, deve ser positiva e diferente de 1.

Como fazer o gráfico de log?

Para construir e interpretar um gráfico de função logarítmica, basta atribuirmos valores a X e calcularmos seu valor em Y, marcando no plano cartesiano os pontos que constituem este gráfico.

Como fazer o inverso de log?

Exemplo: log10(100) = 2. O inverso do logaritmo ou antilogaritmo, expresso em matemática, como antilogb(x) = N é a potência de uma base, normalmente, 10 e o número neperiano (e) elevado ao logaritmo (expoente).

Como funciona função logarítmica?

A função logarítmica é a função do tipo f(x) = logax, em que a é a base do logaritmo da função, a é positivo e a ≠ 1. O logaritmo é usado para descobrir o valor do expoente de uma base qualquer. Assim, o logaritmo de um número b com base a, é o expoente x, que é potência da base e resulta em b.

Qual é o conjunto imagem da função?

O conjunto imagem da função é um subconjunto do contradomínio formado por todos os elementos correspondentes de algum elemento do domínio. Exemplo 1: ... f(1) = 1² = 1, a imagem da função quando x é igual a 1 é 1.

Quais os valores da função logarítmica?

Com os valores encontrados na tabela, traçamos o gráfico dessa função. Note que quanto menor o valor de x, mais perto do zero a curva logarítmica fica, sem contudo, cortar o eixo y. A inversa da função logarítmica é a função exponencial. A função exponencial é definida como f (x) = a x, com a real positivo e diferente de 1.

Como determinar o domínio de uma função?

Através de alguns exemplos, demonstraremos como determinar o domínio de uma função, isto é, descobrir quais os números que a função não pode assumir para que a sua condição de existência não seja afetada. Nesse caso, o denominador não pode ser nulo, pois não existe divisão por zero na Matemática. Portanto, D (f) = {x ? R / x ≠ 1} = R – {1}.

Qual a diferença entre um domínio e um espaço?

Use “U” (que significa "união") para ligar as partes do domínio que estão separadas por um espaço.' Por exemplo, [-1,5) U (5,10]. Isso significa que o domínio vai de -1 a 10, mas que há um espaço no domínio no 5. Isso pode ser o resultado de uma função com “x - 5” no denominador.

Postagens relacionadas: