Como saber se os vetores são linearmente dependentes?

Índice

Como saber se os vetores são linearmente dependentes?

Como saber se os vetores são linearmente dependentes?

Naturalmente, um conjunto de vetores é dito linearmente dependente (LD) se pelo menos um de seus elementos é combinação linear dos outros. Sejam V um espaço vetorial e ∈ V. Se existir algum aj ≠ 0, dizemos que { } ou que os vetores são linearmente dependentes (LD).

Como saber se um conjunto de vetores é linearmente dependente?

Para gente saber se um conjunto de vetores é linearmente dependente (LD) ou linearmente independente (LI) é só ver se algum desses vetores é combinação linear dos demais. Se for uma combinação linear, o conjunto é LD. Caso contrário, o conjunto é LI!

Como criar uma combinação linear?

Então nossa combinação fica o seguinte: Alfredo Steinbruch e Paulo Winterle, Álgebra Linear, 2ª ed., São Paulo, Pearson, 1987, pp. 61. – 11b. . vamos tentar escrevê-lo como uma combinação linear que dê o vetor nulo.

Qual é a dimensão de um conjunto de vetores?

Este número é chamado dimensão, e é denotado por dimV. Todo conjunto de vetores, cujos elementos pertençam a um espaço V, somente é LI se possuir número de vetores menor ou igual à dimensão de V. Exemplo: 3 – D = { [1 0 0], [0 1 0], [0 0 1]}, D E M1 x 3 (IR), (base canônica) é LI?

Postagens relacionadas: